
Nicholas Jaber

April 20th 2022

ECE 523

Dr. Iman Marvian

Quantum and Hybrid Stochastic Gradient Descent Algorithms

Gradient descent is the process of iteratively seeking the global minima of a high

dimensional vector space. These iterations are known as steps and can be imagined as

walking downhill to reach the lowest point of a valley. The purpose of this exercise is to

minimize a function's weight. Minimizing function weight is a useful tool in many NP

problems. These include, but are not limited to: machine learning, neural networks and

least square regressions. Finding the global minima function weight for each of these

use cases indicates the most similar state to an optimal solution. These techniques are

referred to generally as optimization problems, because their efficacy relies heavily on

the optimization of these computationally intensive processes that we will further

describe later in the paper.

Direct computation of high order polynomials is often far less efficient than the

highly iterative process of estimating global minima. Estimating the global minima of

these functions has an NP-like runtime. This means that as problem size increases

linearly, computational resources increase exponentially. For example, for each

additional factor considered in a neural network weighting, the computational

requirement to identify a similarly proximal state to the optimal solution doubles.

Because of this rapid doubling of runtime, one must compromise their effectiveness by

minimizing considered factors and branch connections. These minimizations lead to

significantly less accurate estimation models.

Each of the previously mentioned use cases for gradient descent utilizes a

variation of Newton's method. This is because Newton's method is the gold standard of

efficient and generalizable gradient descent. This method uses the first and second

spatial derivative to estimate the position of the nearest local minima. Newton's method

is described in equation 1.

x(t+1) = x(t) - η H -1∇ f(x(t)) (1)

∇ f(x(t)) refers to the first order spatial derivative of the objective function, referred to as

the gradient in future references. H refers to the Hessian matrix, a square matrix of each

possible second order spatial derivative of the objective function, where Hij = d2f / dxi dxj.

The relations of these variables are shown in equations 2-3.

∇ f(x) = D(x) x (2)

H (f(x)) = H1 + D (3)

η is the hyper parameter, also called the machine learning rate, which relates how

aggressively one seeks the local minima as pictured by the descent step size. A highly

aggressive approach is likely to overshoot the estimation in quickly changing terrain; a

less aggressive approach will take a large number of iterations. As a result, η must be

tailored to a specific problem's local terrain change rate. η must always be greater than

0, so that the direction of travel is in the opposite direction of the upward slope,

described by H -1∇ f(x(t)). By iteratively repeating and stepping towards the local

minima and refining our estimations, one may estimate the state of the local minima. By

repeating this iterative process recursively, one may identify many local minimas and

compare the nearest local minima to many other local minima states. By doing so, one

may acquire the estimated global minima. This recursive iteration is extremely inefficient

for the high dimensional vector spaces needed for even relatively simple models. When

scaling to large problem types, one needs an algorithm that rethinks the computational

process to limit its run-time requirement.

Some simple versions of gradient descent such as quadratic polynomials can be

easily computed with P-like computational resources, but the vast majority of useful

applications of gradient descent depend on high order polynomials. As a result, we must

rethink a generalized method to compute gradient descent. This algorithm must find a

method to compute NP gradient descent problems with P-like computational time and

hardware resources. Optimizing NP problems by using quantum speedups can enable

P-like runtime scaling. This is because quantum computers offer exponential scaling,

meaning that a linear expansion of computational resources can lead to an exponential

expansion of computational complexity.

Rebentrost et al.'s paper Quantum gradient descent and Newton's method for

constrained polynomial optimization focuses on non-quadratic convex or even

non-convex optimization problems. Rebentrost solves these problems by using phase

estimation quantum matrix inversion techniques. The concept is to generate a large

number of quantum state copies, of which a small portion is consumed in combination

with the Hessian matrix and gradient vector from a local region of the objective function

for each iterative step. Because of this constant overwriting rate, only low iteration

optimization techniques would be practical on near term NISQ (Noisy Intermediate

Scale Quantum) computers. As a result, this technique may most likely be implemented

for local gradient descent searches, in combination with an unlocalized classical

iteration technique. This can be done using quantum state exponentiation to estimate

the gradient vector and Hessian matrix of the objective function. First, we will discuss

what a quantum Newton's method looks like for high dimensional sparse polynomial

objective functions. Then, we will discuss how this process can be expanded to include

a small number of inhomogeneities.

To describe the process used to generate this quantum speedup, we must first

define a few key variables and assumptions of the problem type. If the objective

polynomial is of degree 2p and dimensionality N, then it contains N2p coefficients. As

previously mentioned, we can only optimize this process for sparse functions, wherein

very few of these possible coefficients are nonzero. In the particular case when p = 1,

then H-1∇ f(x) = D(x)-1 D(x) x = x.

This concept is effective for objective functions that are homogeneous

polynomials of even degree high dimensional vector spaces and this even works with a

small number of monomial inhomogeneity polynomials. Particularly, Rebentrost focuses

on objective functions, which are multivariate homogeneous polynomials of even

degrees under spherical constraints, and sufficiently low sparsity. Low sparsity allows

for low computationally intensive matrix inversion.

Spherical constraint means that x values are represented as a quantum state,

which is normalized to xT x = 1. We assume that classical algorithms can acquire an x0

estimate, which is reasonably proximal to the local minimum. We assume that the

Hessian of the objective polynomial is positive semidefinite. This means that the

Hessian is symmetric, all eigenvalues are real and greater than zero, and there is an

orthonormal basis which contains an eigenvector of the Hessian. Additionally, objective

polynomials must be smooth and Lipschitz continuous. This ensures that the objective

function has no saddle-points and is convergent to the local minimum for the monotonic

terms.

To estimate the local minima, one must first analytically compute the local

gradient vector and Hessian matrix. To do so, one may use the lie product formula to

calculate eiHΔt as shown in equation 4.

eiHΔt = eiH1Δt eiDΔt + O(p4Λ2Δt2) (4)

Here, Λ represents the sparsity of the polynomial. Next, one must simulate the time

evolutions of the gradient and Hessian. Then, one must add the step vector to each

copy of the state |x t >. |x t+1 > is proportional to (|x t > - η t D t |x t >) with accuracy ε t +1 =

O(η t ε t
D + ε t). Then, one must invert and apply Hessian and gradient as described in

equation 1. Finally, one must measure each of the two ancillary qubits in the |yes> =

(1/√2) (|0>g + i |1>d) and |no> = (1/√2) (i |0>g + |1>d) basis.

To complete this task, we make a few assumptions about the quality and size of

our quantum computer. We assume that we are able to predictably and efficiently

prepare quantum states. We assume that the amplitude information for x0 can be stored

as a normalized value in the z coordinate of a qubit efficiently. This computer should be

able to operate on 2*p*log2N + nx qubits. Where nx is calculated based on how many

steps from the local minima x0 is and how many states are consumed in each iteration.

By utilizing 2 ancillary qubits, one may generate the state (1/√2) |x(t)>|0>g1>d. The

success of the ancillary |yes> and |no> basis measurements are shown using equations

2-3 and 5-6. Collectively, this gives us the probability of finding the state |yes>|1>d

represented by Pyes,1 .

1/4 < (C t+1
D) 2 = 1 - 2 η <x t |D|x t > + η2 <x t |D 2 |x t > (5)

1/16 < Pyes,1 = 1/4 (C t+1
D) 2 (6)

Because of this, the maximum effective number of iterations is O(1/Pyes,1) = O(1). In

other words, this quantum Newton's method gradient descent algorithm is P-like and

linearly related to problem size. This process is only bounded by the error accumulation.

The next step error is O(ε t +1) = O(ε t + η ε t
D). Using phase estimation, ancilla rotation

and measurement, one can obtain the total resource requirement τ as seen in equation

7.

τ = O(1/ε t
D) (7)

For each step, we require 2p log N swap operations to be completed successfully.

Additional errors occur from sampling accuracy of the Hessian. The errors in the system

are due to imperfect state generation, time dependent decoherence, sampling errors

and imperfect gate operation. Combined, these features are called the aggregate error

rate shown in equation 8.

ε t = ε t - 1 + η t ε t
D (8)

Rather than calculating the exact value of the Hessian matrix and gradient vector,

stochasticity can be created by repeated measurements. One can over sample gradient

vector and hessian matrix to lower sampling error rates. This has been shown to lead to

much faster learning rates for neural networks. Additionally, stochasticity increases

generalizability, because over sampling leads to more function agnostic error rates. This

leads to more predictable gradient descent. Using classical gradient descent algorithms,

it is prohibitively computationally intensive to compute exponentiation. Using established

quantum exponentiation algorithms, one may acquire a quantum advantage. This

advantage is only available to sparse Hessian matrices because a major computational

burden in exponentiation is matrix inversion. Doing so in a sparse matrix can allow for

efficient inversion of the Hessian. The probability of successfully navigating this Hessian

matrix calculation is Pyes,1,1
nwt as shown in equation 9-10. Pyes,1,1

nwt represents the

probability of acquiring the state |yes>|1>d|1>g using quantum Newton's method.

(C t+1
H) 2 = 1 - 2 η <x t |H -1 D|x t > + η2 <x t |D H -2 D |x t > (9)

1/16 < Pyes,1,1
nwt = 1/4 (C t+1

H) 2 (10)

The phase estimation estimate the gradient with accuracy εnwt requires O(p3Λ2/ε 3
nwt)

copies of |xt>. The phase estimation estimates the Hessian with accuracy εnwt requires

O(p5Λ2/ε 3
nwt) copies of |xt>. For T iterations, one would need O(p5TΛ2T/ε 3T

nwt) copies of

|xt>.

To expand this process from estimation of high order homogeneous polynomials

to estimations of high order homogeneous polynomials with a small number of odd

degree inhomogeneous terms; we must perform additional vector addition to account for

the inhomogeneous terms. Additionally, when calculating the gradient and Hessian

function, we must include additional inner and outer product terms, to account for time

evolution of the objective function. This process greatly slows down the computation,

and limits the number of inhomogeneities. In all, current estimates can obtain highly

accurate estimations of a global minimum in ~5-20 steps. While classical algorithms

may fail in high dimensional vector spaces, because of the increased prevalence of

saddle points. Quantum gradient descent can accommodate saddle points by taking the

absolute value of each Hessian element.

The next technique we'll explore was presented by Sweke et al. in their paper,

Stochastic gradient descent for hybrid quantum-classical optimization. This paper

discusses the modern approaches to optimize the stochastic model and

hyper-parameter using heuristics. These techniques are useful for the implementation of

existing algorithms on NISQ computers. These techniques include: VQE (Variational

Quantum Eigensolvers), QAOA (Quantum Approximate Optimization Algorithms) and

quantum classifiers. Particularly, using classical computers to identify and refine the

aforementioned variable quantities allows for more effective implementation of these

algorithms on NISQ computers with very limited computational resources.

There are diminishing returns from shortening the step size as seen in the

magnitude of the hyper-parameter, η. Similarly, There are diminishing returns from

increasing the number of Hessian and gradient measurements. A large number of

measurements may increase the accuracy of the subsequent step, however it may lead

to an inordinate expansion of computational resources. Thus in aggregate slowing down

computation. As shown in figure 1, optimizing the heuristics of the hyper parameter and

utilizing information on previous gradient vectors and Hessian functions, we can get

high shot-like performance with very few shots. Thus, these hybrid quantum-classical

optimizations can massively increase computational efficiency. Additional efficiency

benefits can be seen when sampling the objective function's value more infrequently

relative to the frequency of shots as seen in figure 2. Finally, the use of more classically

intensive processes, such as increasing stochasticity of gradient and Hessian

measurements can lead to a vast decrease in computational cost, as seen in figure 3. In

all, hybrid classical-quantum optimization algorithms will likely become the predominant

method to compute global minimas, while quantum computers are not sufficiently

powerful to solve these optimization problems on their own.

A major development in the modern evolution of quantum gradient descent was

the novel algorithm by Harrow Hassidim Lloyd known as HHL. HHL can only apply a

P-like speedup to machine learning when the objective function is well conditioned and

has sparsity poly-logarithmic in the dimension. HHL's runtime is on the order of O(Λ 2 κ 2

/ ε). Here, κ represents the condition number of the function and ε represents the

approximation error. Well conditioned and sparse functions are very atypical in real

world conditions; as a result, HHL is not as widely applicable as we would like.

Consequently, Kerenidis et al. in Quantum gradient descent for linear systems and least

squares shows how to implement QRAM (Quantum Random Access Memory) data

structures to broaden the applicability of HHL to real world conditions. The QRAM data

structure is shown in equation 11.

O(μ κ 2 / ε) ≥ O(Λ κ 2 / ε) (11)

Here, μ is dependent on the value of p, with higher p values leading to μ increasing

relative to Λ. This includes not well conditioned, higher order and denser objective

functions. This QRAM algorithm uses stochasticity in the same methodology as in

Rebentrost's paper. Without stochastic gradient descent, estimates for needed QRAM

range as high as 10 7 qubits. This is extremely far from the current state of the art and

hence, infeasible.

The advantage of QRAM is the ability to reliably store states over time. Doing so

prevents decoherence and allows for fewer qubits to do the same amount of work. As

mentioned in the previous paper, many qubits are needed and consumed for each

iteration of the quantum Newton's method. However, the QRAM model allows for the

same qubits to be utilized repeatedly, meaning that one only needs the number of qubits

suitable to complete the most computationally intensive iteration.

Similar to quantum Newton's method, QRAM can solve semidefinite positive

symmetric polynomials. One method implemented with QRAM is SVE (singular value

estimation). SVE allows for the generalization of QRAM data structures to solve dense

linear systems. SVE uses phase estimation and eigenvectors from the matrix

representation of the objective polynomial to compute the next step.

Using SVE, we can improve the runtime to solve linear systems with runtime O(α

μ log(α 2 / ε)). Here, α represents the number of steps needed to reach a local

minimum. With an optimal structure, one can have runtumes as low as O(μ / ε).

Currently QRAM devices are not sufficiently reliable for the storage of even a small

number of qubits, let alone to serve as a data structure for at least 10 6 qubits.

Consequently, these designs are focused on their application to far future quantum

storage devices.

In total, it seems that the most feasible evolution of quantum gradient descent

algorithms can be divided into three major eras, barring any additional major

developments. The first era would be the development of hybrid classical-quantum

gradient descent algorithms, designed for sparse homogenous high order polynomials.

These computations would be carried out on a small scale quantum computer in

conjunction with assistance from classical computer optimization. The second era would

be the development of purely quantum Newton's method, designed for sparse

polynomials with high order homogeneity and a small number of low order

inhomogeneities. These computations would be carried out exclusively on NISQ

computers. The final era would be to implement QRAM data structure based algorithms.

These algorithms could only be implemented in the far future development of quantum

devices, but would allow for the computation of dense polynomials. The future of

quantum gradient descent is a rapidly advancing field, which will become increasingly

impactful as we evolve quantum hardware from experiment to industrial application.

Figures

Figure 1 The top row of graphs indicates the energy as an analog to computer runtime
with respect to the number of steps to complete a VQE problem for the various number
of shots: 1, 3, 9, 27, 81. Each experiment is run 8*shots times. The bottom row of
graphs indicates the energy with respect to the number of sampling measurements
used to estimate the local gradient and Hessian value. Column 1 represents the default
optimization scheme. Column 2 represents a learning rate decay, which decreases η by
a factor of 2 for the last 20 steps to more precisely refine the estimation. Column 3
represents the Adam optimizer scheme, which uses knowledge of the previous gradient
and Hessian value to estimate the update values with fewer stochastic sampling shots.

Figure 2 The computational
cost to complete a VQE
problem with single
hamiltonian sampling per
step. This experiment was
carried out 8 times for each
of the shot values: 1, 3, 9,
27, 81, and exact. This
graph indicates that
regardless of shots, VQE
solutions always are more
computationally intensive
when there are fewer
optimization steps.

Figure 3 Shows the computational cost to
complete a VQE problem. This experiment
was carried out 8 times for each of the shot
values: 1, 9, 81, and exact. This graph
indicates that regardless of shots, VQE
solutions always are more computationally
intensive when there are fewer
optimization steps.

Bibliography

1. Rebentrost, P., Schuld, M., Wossnig, L., Petruccione, F. & Lloyd, S. Quantum

gradient descent and Newton’s method for constrained polynomial

optimization. New J. Phys. 21, (2019).

2. Kerenidis, I. & Prakash, A. Quantum gradient descent for linear systems and

least squares. Phys. Rev. A 101, 022316 (2020).

3. Sweke, R. et al. Stochastic gradient descent for hybrid quantum-classical

optimization. Quantum 4, (2020).

